Answer  % Correct 

A {line} {contains} at least {two} {points}; a {plane} {contains} at least {three} {points} not all in {one} line; {space} contains at least {four} {points} not all in {one} {plane}.  100%

Through any {two} {points} there is {exactly} {one} {line}.  100%

Through any {three} {points} there is at least {one} {plane}, and through any {three} {noncollinear} {points} there is {exactly} {one} {plane}.  100%

If {two} {points} are in a {plane}, then the {line} that {contains} the {points} is in that {plane}.  100%

If {two} {planes} {intersect}, then their {intersection} is a {line}.  100%

Through a {line} and a {point} not in the {line} there is {exactly} {one} {plane}.  100%

If {two} {lines} {intersect}, then they {intersect} in {exactly} {one} {point}.  0%

If {two} {lines} {intersect}, then {exactly} {one} {plane} {contains} the {lines}.  0%
