Geometrical data of finned tubes in the heat exchanger made of oval and round tubes.

## Abstract

The chapter provides an analytical mathematical model of a car radiator, which includes different heat transfer coefficients (HTCs) on the first and second row of pipes. The air-side HTCs in the first and second row of pipes in the first and second pass were calculated using the correlations for the Nusselt number, which were determined by CFD simulation using the ANSYS software. Mathematical models of two radiators were built, one of which was manufactured of round tubes and the other of oval tubes. The model permits the determination of thermal output of the first and second row of tubes in the first and second pass. The small relative differences between the thermal capacities of the heat exchanger occur for different and uniform HTCs. However, the heat flow rate in the first row is much greater than the heat flow in the second row if the air-side HTCs are different on the first and second tube row compared to a case where the HTC is uniform in the whole heat exchanger. The heat transfer rates in both radiators calculated using the developed mathematical model were compared with those determined experimentally. The method for modeling of plate-fin and tube heat exchanger (PFTHE) proposed in the paper does not require empirical correlations to calculate HTCs both on the air side and on the inner surfaces of pipes. The presented method of calculating PFTHEs, considering different air-side HTCs evaluated using CFD modeling, may considerably reduce the cost of experimental research concerning new design heat exchangers implemented in manufacturing.

### Keywords

- Air-cooled heat exchangers
- Air-side Nusselt number
- Different heat transfer correlation on individual pipe row
- CFD modeling
- Empirical heat transfer correlation

## 1. Introduction

Cross-flow finned heat exchangers are used in many industrial fields. In the case of heat exchangers operating at high parameters, individual round fins are welded to the outer surfaces of the tubes. On the other hand, heat exchangers in which the temperature of the working medium is just above the ambient temperature consist of aluminum tubes fitted with aluminum fins. These are compact heat exchangers known as plate-fin and tube heat exchangers (PFTHEs).

In finned heat exchangers with both inline and staggered tube arrangements with continuous fins, the heat transfer coefficient reaches its highest values on the first tube row (laminar flow). In subsequent rows, the HTC decreases. This is due to the large HTC values in the inlet part of channels between the fins compared to the mean coefficient on the entire fin surface.

Different methods are used to calculate heat exchangers. In the ε-NTU (Effectiveness - Number of Transfer Units) method, one effectiveness value is determined for the entire heat exchanger [1]. In the P-NTU (Effectiveness - Number of Transfer Units) method, P efficiency is determined for each medium [2]. Both the above methods and the LMTD (Log Mean Temperature Difference) method assume a constant HTC value on the gas side.

Kuppan collected in his book [3] relations and diagrams to determine the efficiencies of typical heat exchangers. The temperature of the working media in large heat exchangers built from several rows of tubes can be determined by numerical models [4] based on the finite difference method or the finite volume method.

The determination of the average air-side HTC of PFTHEs built with one, two, three, and four rows of tubes have received much attention in the literature. For finned tube heat exchangers with more than four tube rows, the air-side average HTC for the entire heat exchanger is determined as for a heat exchanger built with four tube rows. Kim et al. in [5] proposed formulas to calculate wavy PFTHEs. The formulas are valid for both in-line and staggered tube arrangements and allow the determination of the air-side Nusselt number and the friction coefficient. On the other hand, the paper [6] describes correlations based on experimental measurements and applicable only to PFTHEs with a linear tube system. The paper [7] describes a study showing that increasing the number of tube rows in a continuous plain fin and tube heat exchanger under dehumidifying leads to a decrease in heat transfer. Similar studies were presented by Halici et al. in the paper [8].

The authors studied PFTHEs with a staggered tube arrangement, made of copper tubes and aluminum fins. The results of the study allowed the determination of friction and Colburn coefficients and HTC for air. The determined friction factor and heat transfer coefficient for wet surfaces were greater than for dry surfaces and decreased with the increasing number of pipe rows. Correlations for the Colburn factor presented in [5, 6, 7, 8] were determined for whole finned heat exchangers. No correlations for Colburn factor were determined for individual tube rows in PFTHEs. Also in the works [9, 10], the correlations determined were for the entire car radiator and not for individual rows.

Rich [11] performed a study of PFTHEs with a staggered tube arrangement with a higher number of tube rows (5 and 6 tube rows). The results also showed that the HTC on the air side decreases with the increasing number of rows. The tests were conducted for air velocity of less than 3.5 m/s and Reynolds number of 12000.

Marković et al. [12] based on experimental data proposed a formula to determine the air pressure drop in a finned heat exchanger with a staggered tube arrangement. In the paper [12], the Darcy-Weisbach friction factor on the air-side depends on the Reynolds number and the ratio of the total external surface area of the finned tube to the surface area of the unfinned tube.

The works [1, 3, 13, 14] contain information describing the effect of pipe dimensions, shape and wall thickness, fin size, the longitudinal and transverse pitch of tube spacing on heat transfer in PFTHE.

In addition, in [14], it is discussed how the heat output of the heat exchanger changes depending on different methods of heat transfer intensification on the inner surfaces of the tubes.

CFD simulations were used in [15, 16, 17] to determine the uniform heat transfer coefficient for the entire PFTHE.

Sun et al. presented the results of CFD simulations and experimental studies of the optimized PFTHE in their paper [15]. The optimization of the finned heat exchanger consisted of directing the airflow to the back of the tubes using appropriately prepared channels. This procedure was intended to stop the formation of dead zones, thus improving heat transfer and reducing the pressure drop on the air-side.

Numerical and experimental studies of different types of fins are presented in the paper [16]. Wavy and plain fins with radially spaced winglets around the tubes in the plate fin tube heat exchanger were discussed. Numerical calculations were carried out in the form of CFD simulations in which laminar flow was assumed for air velocities ranging from 1.5 m/s to 3.5 m/s. For air velocities above 3.5 m/s, the turbulent flow was assumed. On the other hand, experimental studies allowed the determination of correlations for the air-side Nusselt number.

Nagaosa in paper [17] used direct numerical simulation (DNS) to determine the air-side heat transfer correlation, which was then verified experimentally. Good agreement of the obtained results was achieved. Unfortunately, computer-based DNS calculations require a long time to perform.

When turbulent flow occurs on the air-side (high Reynolds numbers), the Nusselt number in the first pipe row of the PFTHE takes on lower values than the Nusselt numbers in the subsequent pipe rows. This phenomenon occurs both in heat exchangers made of smooth tubes [1, 2, 3] or single finned tubes [18] and in heat exchangers with continuous fins [11]. Kearney and Jacobi [18] determined by experimental study the Nusselt number for each row of tubes in cross-flow finned tube heat exchangers with two-rows of tubes. The results showed that for a heat exchanger with an in-line arrangement of tubes, the Nusselt number in the first row was 34% lower than the Nusselt number in the second row for a Reynolds number of about 5000 and 45% lower for a Reynolds number of about 28000. In a heat exchanger with a staggered arrangement of tubes, a 45% lower Nusselt number over the entire range of Reynolds numbers was obtained for the first row of tubes compared to the second row.

In the available literature, few works are describing mathematical models of heat exchangers considering different heat transfer coefficients on different rows of heat exchanger tubes. The works [19, 20] used mathematical models of PFTHEs with different heat transfer coefficients on the first and second row of tubes to simulate steady-state operation. In work [21], calculations of PFTHEs operating under transient conditions were performed.

The paper [22] describes an analytical method for determining the required air mass flow rate of a heat exchanger used in the propane pre-cooling cycle of an LNG plant. The method can be used to control the air mass flow rate through the fin tubes of an air-cooled heat exchanger to control the outlet temperature of the working media.

The paper [23] deals with the numerical modeling of a heat exchanger with finned tubes with large fin pitch. Computer simulations were carried out to propose the optimal perforation size and design for maximum heat transfer coefficient. Fin-and-tube compact heat exchangers (FTCHEs) were investigated in [24]. The results of a three-dimensional CFD simulation for an FTCHE heat exchanger constructed from oval tubes with smooth and corrugated fins are shown. Thermal–hydraulic studies were carried out for Reynolds number in the range of 200–900. The computational results show that the average Nusselt number for FTCHE with corrugated fins can be increased up to 20% compared to the case with plain fins. The average performance value for the single- and three-wave finned oval tube compact heat exchangers increased by 5% and 15%, respectively, relative to the plain tube case. CFD modeling has also been used by the authors of a paper [25] to evaluate the thermo-hydraulic conditions of heat exchangers with finned tubes of circular, oval and flat cross-sections, with in-line or staggered tube arrangements. The study was carried out for small Reynolds numbers (400–900). For the selected performance criteria, it has been shown that the oval tube with the highest axial ratio is the optimum configuration that provides a heat transfer coefficient increase of 14% at Reynolds number Re = 400 and 5% at Reynolds number Re = 900. In turn, the effect of different combinations of circular and elliptical tubes on the air-side flow and heat transfer characteristics of the heat exchanger was investigated in [26]. Inlet air velocities were in the range of 0.5–2.5 m/s. The CFD modeling results obtained show that at low inlet velocities, the system with the elliptical tube in front of the circular tube is better than the system with the circular tube alone. At higher air inlet velocities, the system composed of elliptical and circular tubes performs better than the heat exchanger with elliptical tubes alone. Also, the heat exchanger performance was found to be better when elliptical tubes were grouped in the upper region and round tubes in the lower region compared to the alternative arrangement of elliptical and round tubes.

An analytical mathematical model of a two-pass car radiator taking into account the different air-side HTCs on the first and second row of pipes was presented in this chapter. The results of modeling car radiators made of round and oval pipes were compared with the results of experimental research.

## 2. Mathematical model of the two-pass PFTHE with different heat transfer coefficients on each tube row

An analytical mathematical model of a two-pass radiator with two rows of pipes was developed. The first and second-row HTCs were calculated using heat transfer correlations, which were determined based on CFD (Computational Fluid Dynamics) simulations. The radiator flow diagram is shown in Figure 1.

The mass flow rate

### 2.1 Analytical model for the first row of pipes

The governing energy conservation equation equations for the water and air in the first tube row are

where:

Two local dimensionless coordinate systems were introduced

The number of heat transfer units on the water-side

where:

The overall HTC

where:

where:

The boundary conditions for Eqs. (1) and (2) are as follows

The solution to Eqs. (1) and (2) with boundary conditions (7) and (8) is

By substituting

Expression (9) describes the temperature

where * B*stands for

The temperature distribution of water and air in the first row of pipes of the first pass can be determined using Eqs. (9)–(13).

### 2.2 Analytical model for the second row of pipes

The relevant differential equations for the second row of pipes are

where

Eq. (5) allows to determine the total HTC

After taking into account that the water temperature at the inlet to the second row of pipes is

The solution to Eqs. (14) and (15) under boundary conditions (18) and (19) is

where

Eq. (13) allows to calculate the coefficient B. To determine the air temperature behind the second row of pipes

The average air temperature after the second row of pipes

When the air-side HTC * D* =

*and the denominator (*B

*) is going to be zero. When*D - B

*the formula (20) requires transformation. Writing Eq. (20) as*D = B

and applying the L’Hôpital rule to an expression where, at * D = B*, the numerator and the denominator are equal to zero, one obtains

where * z = D – B*.

Taking into account the relation (26) for * D = B*in the formula (25), i.e. for

where

If

where the symbol * C*means

## 3. An analytical model of a car engine radiator

The relationships derived for the single-pass double-row PFTHE, taking into account the different HTCs on the first and second row of pipes, were used to develop an analytical mathematical model of the entire radiator, the flow diagram of which is shown in Figure 1. This is an engine radiator with a displacement capacity of 1600 cubic centimeters.

The constructions of coolers made of round and oval tubes are described in detail in articles [9, 10], respectively. First, the temperatures

The thermal conductivity of aluminum tubes and fins was assumed to be * k* =

_{w}

*= 207 W/(m·K).*k

_{f}

## 4. Heat transfer correlations on the air-side

Based on CFD modeling performed in ANSY-CFX, the air-side heat transfer coefficient values were determined. The paper [19] provides a description of the method for determining the correlations for the average Nusselt number in the first and second row of pipes and for the entire cooler.

Nusselt number correlations for PFTHE from oval and round pipes are given below:

oval pipe radiator

The Reynolds number on the air-side can be determined by knowing the hydraulic diameter and the air velocity in the smallest flow area. The hydraulic diameter for the oval tube cooler analyzed was

round pipe radiator

Analyzing formulas (33) and (34), it can be observed that the exponent at Reynolds number for the first row of circular pipes is low and equals 0.2414. This indicates the dominance of laminar flow in the first row of pipes on the air-side. In the second row of tubes, the exponent at Reynolds number is higher and equals 0.5499. There are vortexes at the front and rear of the tube.

However, the average Nusselt number in the first row is higher than in the second row. This is because the inlet section is located in the gap formed by two adjacent fins, which have very high values of heat transfer coefficients at the fin surfaces. This results in a greater heat flow rate absorbed by the air in the first row than in the second row. The vortexes formed near the front and rear stagnation points on the surface of the second-row tube reduce the heat transfer to a large extent. The rotating air has a temperature close to that of the fin and pipe surfaces. From the heat transfer point of view, these are dead zones.

The comparison of the heat correlations determined by CFD modeling with the correlations determined based on experimental tests was carried out for two different car radiators. The flow arrangement of both radiators is the same (Figure 1). The first radiator is made of round pipes and the second one of the oval pipes.

## 5. Heat transfer correlations on the liquid-side

The present chapter demonstrates that by using theoretical relationships to calculate the heat transfer coefficient on the inner surfaces of the heat exchanger tubes and the use of the air-side correlations determined by CFD modeling, very similar results to experimental HTCs can be obtained.

The proposed methodology for determining the heat-transfer coefficient will reduce the cost of experimental tests for designed heat exchangers or even eliminate them. In determining the HTC for laminar flow, Gnielinski’s formulas were used [27]. For the transition and turbulent flow, the formulas proposed in [28] were used.

In the range of laminar flow regime, the average HTC along the entire length of pipe

The symbol

The second Nusselt number

The Nusselt number in the transition and turbulent flow range was evaluated by Taler’s relatonship [28].

The Darcy-Weisbach friction factor for turbulent flow, was calculated by the Taler formula [29]

The relationship for the friction factor in the transition region was obtained using the linear interpolation [29] between the value

The Reynolds number on the water side

## 6. Experimental results

Based on the experimental testing of a car radiator made of oval and round tubes (Table 1), heat transfer correlations on the air side were determined.

Geometric data | Heat exchanger of oval pipes | Heat exchanger of round pipes |
---|---|---|

Outer tube diameter | Maximum tube diameter Minimum tube diameter | |

Thickness of tube wall | ||

Height | ||

Fin thickness | ||

Air-side hydraulic diameter | ||

Water-side hydraulic diameter |

### 6.1 Engine cooler made of oval tubes

A detailed description of the test stand for experimental research of the engine radiator constructed from oval tubes can be found in [10]. The necessary parameters, including the exponent at Reynolds number, were determined from measured data. The air parameters during the radiator studies were as follows:

Velocity: 0.98 m/s - 2.01 m/s

Temperature: 11°C - 15°C

The water parameters at the cooler inlet were as follows:

Volume flow rate: 627 l/h - 2421 l/h

Temperature: 59.6°C - 72.2°C.

The Reynolds number on the air side ranged from 150 to 330, and the water-side Reynolds number in the first (upper) pass ranged from 2500 to 11,850. When determining the air-side heat transfer correlations, the water-side HTC was calculated using (36)–(42). The following Equation for the air-side Nusselt number

where the parameters

Numbers with a sign

### 6.2 Engine cooler made of round tubes

A test stand description of a car radiator made of round tubes can be found in [10]. Flow and heat measurements allowed to determine the air-side heat transfer correlations. The air parameters during the radiator tests were as follows:

Velocity: 0.74 m/s - 2.27 m/s

Temperature: 3.6°C - 15.5°C

The water parameters at the cooler inlet were as follows:

Volume flow rate: 300 l/h - 2410 l/h

Temperature: 50.0°C - 72.0 °C.

The water flow regime changed from laminar to transitional and then to turbulent during testing. The air-side Reynolds

Based on the 70 data series, the following values of parameters

Numbers with a sign

## 7. Analysis and discussion of heat flow rates from water to air transferred in the entire heat exchanger and individual rows of pipes

In the case of a radiator made of oval pipes, the results of mathematical modeling and measurements are presented as a function of the Reynolds

### 7.1 Engine cooler made of oval tubes

The thermal capacity of the radiator was calculated by using an analytical mathematical model of the radiator proposed in this paper, assuming the uniform air-side HTC on both rows of pipes. Figure 3a shows heat flow rates calculated using the mathematical model of the PFTHE for average volumetric flow rate

The water flow in the pipes was laminar. The Reynolds number on the water-side in the first pass was between 1222 and 1287, and in the second pass between 1358 and 1430. The velocity of the flowing air was * w*, and its values varied from 0.71 m/s to 2.2 m/s. The heat flow rates shown in Figure 3b were determined for the following data:

_{0}

The relative difference was calculated using the expression

where:

The relative difference e was calculated from the following expression

The results of measurements and calculations of the heat transfer rate

Both when using heat transfer correlation (32) based on CFD modeling and empirical correlation (43), the relative differences

Figure 5 shows a similar comparison as in Figure 4, but for other averaged measurement data:

It was found that the correlation for the air-side Nusselt number

The total heat transfer rate from the air to the water was calculated using the following Equation

The symbols

The relative

A comparison of the first and second pipe row heat flow rates in the first and second pass of the radiator and the radiator heat output for the uniform HTC throughout the radiator and different HTCs in the first and second pipe row are shown in Figure 6a for

The results presented in Figure 6a and b show that the radiator thermal output is almost identical for the uniform HTC throughout the radiator and for different HTCs in the first and second row of tubes. As shown in Figures 5 and 6, the radiator capacity determined by applying a mathematical model of the car cooler using the CFD based air-side correlation for the Nusselt number is very well in line with the measurements. It can also be seen that the heat flow rates exchanged in the first row of the heat exchanger, both in first and second pass, are significantly higher for different correlations for the air-side Nusselt compared to the heat flow rates obtained assuming the same HTC in both pipe rows.

The heat capacity of the heat exchanger is almost identical with the same and different HTCs on the first and second pipe row (Figures 5 and 6). CFD modeling and analytical formula [19] were used to determine the air temperature increase in the entire heat exchanger. A uniform HTC for the two pipe rows was then determined from the equality condition of the calculated air temperature increases. The thermal output of the entire heat exchanger will be nearly identical with uniform and different HTCs on the first and second rows of tubes. This is because the air temperature increase on both tube rows is equal to the sum of temperature increases on the first and second tube rows.

Figure 7a and b illustrate the higher heat absorption by the air in the first pipe row and the significant reduction of heat transfer in the second pipe row if different correlations for the Nusselt numbers in the first and second pipe row are taken into account compared to the respective outputs of the individual rows with a uniform HTC.

Figure 7a and b show that the more considerable differences in the exchanged heat flow through the first and second row of pipes for uniform and different HTCs are higher for the larger volume flow rate passing the cooler. The differences in the heat flow rates exchanged by the individual pipe rows with equal and different HTCs on the first and second pipe row become smaller as the air-side Reynolds number increases.

### 7.2 Engine cooler made of circular tubes

Figure 8 depicts a comparison of the heat flow rates for the CFD based air-side correlation (35) and empirical correlation (45) for averaged measurement data:

The results presented in Figure 8 show that the capacity of the cooler constructed with round tubes calculated for the empirical correlation to the air-side Nusselt number exceeds the capacity of the cooler calculated using the correlation to the air-side Nusselt number determined by CFD modeling. The relative difference

The relative difference

Figure 10 shows a comparison of the heat flow rates transferred in each pipe rows assuming the same air-side heat transfer coefficient in the mathematical model of the radiator and different HTCs in the first and second tube rows.

The air in the first pipe row takes up a significantly higher heat flow rate assuming different HTCs in the first and second pipe row compared to the heat flow rate determined assuming an even HTC throughout the heat exchanger (Figures 10 and 11).

The relative differences

## 8. Conclusions

An analytical model of a two-pass car radiator with two rows of pipes was built. The use of the correlations determined by CFD modeling to calculate the air-side heat transfer coefficient was proposed. Radiators constructed from round and oval pipes were investigated. Mathematical models of car radiators were developed, in which only one average heat transfer coefficient for the entire exchanger was used, as well as different heat transfer correlations for evaluating the air-side heat transfer coefficient on the first and second row of pipes. The use of the proposed heat exchanger calculation method will allow designing a heat exchanger with the optimum number of tube rows. Taking into account different heat transfer coefficients on each row of tubes in the calculations also allows for a more accurate calculation of the thermal output of individual rows of tubes.

The water flow regime in the tubes may be laminar, transitional, or turbulent. The results of the calculations of both tested car radiators were compared with experimental data. The compatibility of calculation and measurement results is very good. The presented method of calculating plate-fin-and-tube-heat exchangers is attractive because of eliminating costly experimental research necessary for the experimental determination of the heat transfer correlations on the air and water side.